
Man Kam Kwong1Orthogonally Compensated W-Multiresolution Analysis andSignal ProcessingThe concept of a W-matrix is used to give an elementary interpretation of a biorthogonal wavelet decompositionof signals. We also give a method to modify the decomposition to give an orthogonal projection on the the spacespanned by the scaling vectors. Roughly speaking, our treatment is a �nite-length analog of the well-known theoryof multiresolution analysis of Meyer and Mallat. Our approach di�ers in that it deals directly with the discretecase, it takes care of the boundary elements without explicit padding, and it uses a notion similar to that of semi-orthogonality introduced by Chui. Our algorithm has 
exibility in the choice of �lter coe�cients. The decomposition,orthogonalization, and restoration algorithms are computationally fast.1. W-Matrices and W -TransformsThe theory of wavelets has had a great impact on the technology of image processing. Excellent expositions ofthe classical theory can be found in [1] and [2] and the references quoted in them. The idea of W-matrices wasintroduced in [3] and has been used to give an elementary interpreation of wavelet decomposition. The concept hadalso led to some new perspectives on how discrete signal can be treated. Implementation of four-tap W-transformswas described in [4].In this paper, we survey this approach and describe a method to modify the decomposition to give an orthogonalprojection on the the space spanned by the scaling vectors.We use the special case of four-tap �lters for the majority of our discussion; most of the ideas can be extendedto the general case. We start with any vector of four numbersh = [h1; h2; h3; h4]; (1)such that h1h4 � h2h3 6= 0. Although the theory imposes no further restrictions, in practice, these numbers areusually chosen to form a four-tap high-pass �lter. As a concrete example, we use [�1; 3;�3; 1]. Choose two othernumbers c 6= d, and form the vectorg = [g1; g2; g3; g4] = [ch1; ch2; dh3; dh4]: (2)For example, with c = 1; d = �1, g is [�1; 3; 3;�1]. Stack n copies of the pair of vectors to form the array0BBBBBBBB@ g1 g2 g3 g4h1 h2 h3 h4g1 g2 g3 g4h1 h2 h3 h4. . . g1 g2 g3 g4h1 h2 h3 h4 1CCCCCCCCA : (3)Each pair is shifted by two positions to the right relative to its previous pair, and blank positions are �lled withzeros. We add the �rst and last columns to their neighbors, respectively, to form a matrix of order 2n� 2n :W = 0BBBBBBBB@ g1 + g2 g3 g4h1 + h2 h3 h4g1 g2 g3 g4h1 h2 h3 h4. . . g1 g2 g3 + g4h1 h2 h3 + h4 1CCCCCCCCA : (4)1This work was supported by the Mathematical, Information, and Computational Sciences Division subprogram of the O�ce ofComputational and Technology Research, U.S. Department of Energy, under Contract W-31-109-Eng-38.



We remark that \adding" is not the only way to deal with the boundary columns. Other methods including \folding"(for four-tap �lters, this is the same as \adding"), \linear extrapolation" (replace the �rst row by g2+2g1; g3�g1 andthe second row by h2+2h1; h3�h1), and \quadratic extrapolation" (replace the �rst row by g2+3g1; g3�3g1; g4+g1and the second row by h2 + 3h1; h3 � 3h1; h4 + h1), each leading to a di�erent boundary wavelet.An interesting fact is that the inverse of W (when it exists) has a similar structure (formed by stacking pairsof shifted vectors of length four) and the numbers involved are independent of n. Let us denote by Q (called thequadratic spline W-matrix) the square matrix generated by our concrete example using \adding." ThenQ�1 = 116 0BBBBBBBBBBB@ 4 43 �3 1 11 �1 3 33 �3 1 11 �1 3 3. . . 3 �3 1 11 �1 3 34 �4 1CCCCCCCCCCCA ; (5)no matter what n is (one, therefore, need only compute the inverse for n = 3). The general formula for W�1, whichcan be obtained easily using a symbolic manipulation software such as MAPLE, takes up too much space to beincluded here.Although it is possible to regard W�1 as formed by stacking two row vectors as in the case of W, it is moreappropriate to consider W�1 as formed by packing vertically shifted versions of two basic column vectors. In thecase of Q�1, the two basic column vectors are g = [1; 3; 3; 1]t and h = [1; 3;�3;�1]t. Here the superscript t denotestranspose. These vectors are dual to g and h used to formW.A matrix of odd order is constructed by deleting the last row of the matrix in (4) and then adding the lastcolumn to its neighbor. One can verify that the inverse of odd-order W has a similar structure.In general, we start with two row vectors of any �nite length; stack n pairs of them, each shifted by twopositions to the right; and choose a consistent method of casting out some of the leading and trailing columns (andthe last row) to form a square matrix of even (odd) order. It can be proved that with appropriate choice of the basicvectors, the inverse of the matrices so constructed are generated by two dual column vectors.De�nition 1. A W-matrix refers to the class of matrices of all orders formed by two basic row vectors of �nite lengthin the manner described above, with the property that the inverse of each matrix in the class is formed by two dualcolumn vectors of �nite length, in a manner (details omitted) independent of the order of the matrix.For the sake of convenience, we will use the same symbolW to denote a W-matrix (which is a class of matrices) orany member of the class. A one-dimensional signal is a column vector of arbitrary but �nite length.De�nition 2. Given a W-matrix W and a signal x, the W-transform of x is a pair of signals Wx = (y1;y2) formed,respectively, by the odd and even components of y =Wx, where W is a matrix of the appropriate order in the givenclass.Both W and its inverse W�1 involve O(N ) computational steps, where N = length(x), because the rows of W andW�1 have only four nonzero elements in each row. We state two existence results.Theorem 1. Given any vector h = [h1; h2; � � � ; h2n] of even length, one can supplement it with a vector g so thatthe pair will generate a W -matrix if the (2n� 1)� 2n matrixA = 0BBB@ h2 �h1h4 �h3 h2 �h1 . . . �h2n�1 h2n 1CCCA (6)has full rank. Let B be the matrix obtained from A by deleting the middle row of A. The solution space of thematrix equation B [z1; z2; � � � ; z2n]0 = 0 is a two-dimensional linear space that contains h. Any nonzero vector in thesolution space other than a multiple of h can be used as g.



Theorem 2. For any given n numbers h1; h2; � � � ; hn, one forms the vector h = [h1; h2; � � � ; hn;�hn; � � � ;�h2;�h1].If h satis�es the conditions in Theorem 4, there exists a symmetric g such that (h;g) and g generates a W -matrix.2. Decomposition of x by the Dual Base VectorsSuppose y1 = [v1; v2; � � �]t and y2 = [w1; w2; � � �]t, and the column vectors of W�1 are g1;h1;g2;h2; � � �. Note thatgi and hi, except the �rst and the last ones, are translates of g and h, respectively. It follows from x =W�1y thatx =X vigi +Xwihi: (7)We can, therefore, interpret the W-transform as realizing (by providing the coe�cients vi and wi) the projection of xonto the subspaces G and H spanned by fgig and fhig, respectively. In general, these subspaces are not orthogonalto each other. The vectors hi correspond to wavelets of the �nest resolution in the theory of biorthogonal wavelets.When g corresponds to a low-pass �lter and h a high-pass �lter, the projection onto the subspace G (P vigi)gives the smooth part of the signal, while the projection onto H (Pwihi) gives the detail part.3. Orthogonal CompensationA usual technique used in lossy signal compression is to discarding the small components of y2. The error incurredin discard a particular coe�cient wj is wjhj. We can minimize this error by compensating the remaining signalwith the orthogonal projection of wjhj onto the subspace G. Likewise, if we are going to discard the whole y2, wecan compensate y1 by adding the orthogonal projection ofPwihi onto the subspace G. The orthogonal projectionof a vector u onto g, O(u), is the column vector formed by the coe�cients ci in the following equation:u =X cigi + e; (8)where e is perpendicular to gi for all i. By taking the inner products of EQuation (8) with gi for all i, we obtain atridiagonal system of linear equations with the unknown ci. Solving such a system requires O(N ) operations.De�nition 3. The orthogonally compensated W-transform of x is Wox = (yo;y2), where yo = y1 +O(Pwihi).Given (yo;y2), we can recover x by reversing the process: subtract O(y2) from yo to obtain y1, and then applyW�1. The orthogonal projection of x onto G is W�1(yo;0).A compression algorithm usingWo will comprise the following steps. A 1D signal x is �rst decomposed into thepair (yo;y1), on which quantization is applied to give an approximate pair (~yo; ~y2). (A 2D image will be decomposedinto four subsignals using an orthogonally compensated W-transform twice, once in the x direction, and once in they direction.) Instead of coding this new pair, half of W�1o is performed, namely, to obtain (~yo � O(~y2); ~y2). Thisway, only the inverse of W will need to be applied in the decompression algorithm.In terms of obtaining the orthogonal projection of x ontoG, our procedure is equivalent to the classical methodof orthogonalizing the scaling function g, or Chui's method [1] of keeping g while looking for a modi�ed waveletvector (to replace h) that is perpendicular to G. The classical method [2] will, in general, produce a wavelet vectorof in�nite support, and the decomposition and restoration algorithms will then require �lters of in�nite support.Mallat [5] has devised a fast algorithm using FFT. On the other hand, Chui constructs a modi�ed wavelet of compactsupport (compactness guarantees that the restoration algorithm is fast) that generates the orthogonal complementof G. The decomposition algorithm, however, will involve an in�nite support �lter.4. Multiresolution AnalysisWhen g is a high-pass �lter, most components of y2 are small and can be discarded for the purpose of signalcompression. On the other hand, y1 or yo is a slightly blurred representation of x that usually retains the salientfeatures of x. It is natural to iterateW on y1 orWo on yo. This step leads to the familiar concept of multiresolutionpioneered by Meyer and Mallat [5].Suppose W(y1) = (z1; z2). The components of z1 (z2) corresponds to the coe�cients of the second-levelbiorthogonal scaling (wavelet) vectors.We note, however, that applyingWo on yo does not yield an orthogonal projection onto the subspace spannedby the second level scaling vectors. This is because the translates of the scaling vectors are not orthogonal to eachother. We call the multiresolution generated by iterating Wo quasi-orthogonal. It is possible to obtain a trulyorthogonal compensation by expressing the orthogonal decomposition identity (analogous to (8)) for z2 in terms of



the �rst level representation. The resulting linear system to be solved for the unknown coe�cients will then involvea 5-banded matrix instead of a tridiagonal matrix. The computational requirement, although higher, is still of theorder O(N ). In practice, we �nd that the quasi-orthogonal algorithm is quite satisfactory.5. Observations
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250Figures 1a and 1b. Projections onto the space spanned by third-level scaling functions (Q and D4)� The quadratic spline transform Q generated by h = [�1; 3;�3; 1] has a smooth scaling function. As a result, itperforms well for de-noising and for compressing smooth signals. In the above �gures, the two jagged curves arethe same signal, which is part of a GIF image. In Figure 1a, the smooth solid curve is restored from a three-levelorthogonally compensated Q transform (the dotted curve is obtained without using orthogonal compensation),after discarding all the detail wavelet coe�cients. For comparison, the result using the four-tap Daubechieswavelet is given in Figure 1b.� The jaggedness of the original data is due to noise that is almost always present in an image. Sometimes noiseis arti�cially added by a dithering process. An understanding of how to reverse the process can be useful noiseremoval.� Note that the process of decarding details smoothes out both noise and edges. In applications to image processing,the preservation of edges and local optima (minus noise) is important. This can be achieved by retaining thosewavelet coe�cients in the neighborbood of such points, the location of which can often be determined moree�ciently with methods not based on wavelets.� In practice, we seldom use more than four levels of multiresolution analysis. Often three is enough.� When used without orthogonal compensation, Q does not satisfy the conventional de�nition of biorthogonalwavelets, since the dual wavelet is not square integrable as the number of resolution levels approaches 1. Evenwhen only a �nite number of levels are used, the error incurred in discarding high-level wavelet coe�cients canbe large. (See the dotted curve in Figure 1a.) Orthogonal compensation is e�ective in controlling this error.� The potential of the 
exibility in picking h remains to be investigated. The choice of h can be done adaptivelyfor di�erent regions of the image as well as at di�erent levels of resolution.6. References1 Chui, C. K.: An Introduction to Wavelets; Academic Press (1992).2 Daubechies, I.: Ten Lectures on Wavelets, CBMS-NSF Series Appl. Math., SIAM, 1991.3 Kwong, Man Kam: MATLAB implementation of W-matrix multiresolution analyses; Preprint Series MCS-P462-0894(available by ftp: ftp@mcs.anl.gov /pub/W-transform/wtransf2.ps.Z), Mathematics and Computer Science Division, Ar-gonne National Laboratory (1994).4 Kwong, Man Kam, and Tang, Peter P. T.: W -matrices and nonorthogonal multiresolution analysis of �nite signals ofarbitrary length; Preprint Series MCS-P449-0794 (available by ftp: ftp@mcs.anl.gov /pub/W-transform/wtransf1.ps.Z),Mathematics and Computer Science Division, Argonne National Laboratory (1994).5 Mallat, S. G.: A theory for multiresolution signal decomposition: The wavelet representation; IEEE Trans. on PatternAnalysis and Machine Intelligence 11 (1989), 674{693.Addresses: Man Kam Kwong, Mathematics and Computer Science Division Argonne National Laboratory Ar-gonne, IL 60439-4844 E-mail: kwong@mcs.anl.gov


